强化学习(RL)的成功在很大程度上取决于从环境观察中学习强大表示的能力。在大多数情况下,根据价值功能的变化,在各州之间纯粹通过强化学习损失所学的表示形式可能会有很大差异。但是,所学的表示形式不必非常具体地针对手头的任务。仅依靠RL目标可能会产生在连续的时间步骤中变化很大的表示形式。此外,由于RL损失的目标变化,因此所学的表示将取决于当前价值/策略的良好。因此,从主要任务中解开表示形式将使他们更多地专注于捕获可以改善概括的过渡动态。为此,我们提出了局部约束的表示,辅助损失迫使国家表示由邻近状态的表示可以预测。这不仅鼓励表示形式受到价值/政策学习的驱动,还可以自我监督的学习来驱动,这会限制表示表示的变化太快。我们在几个已知的基准上评估了所提出的方法,并观察到强劲的性能。尤其是在连续控制任务中,我们的实验比强基线显示出显着的优势。
translated by 谷歌翻译
大多数强化学习算法都利用了经验重播缓冲液,以反复对代理商过去观察到的样本进行训练。这样可以防止灾难性的遗忘,但是仅仅对每个样本都分配了同等的重要性是一种天真的策略。在本文中,我们提出了一种根据样本可以从样本中学到多少样本确定样本优先级的方法。我们将样本的学习能力定义为随着时间的推移,与该样品相关的训练损失的稳定减少。我们开发了一种算法,以优先考虑具有较高学习能力的样本,同时将优先级较低,为那些难以学习的样本,通常是由噪声或随机性引起的。我们从经验上表明,我们的方法比随机抽样更强大,而且比仅在训练损失方面优先排序更好,即时间差损失,这是在香草优先的经验重播中使用的。
translated by 谷歌翻译
Lifelong learning aims to create AI systems that continuously and incrementally learn during a lifetime, similar to biological learning. Attempts so far have met problems, including catastrophic forgetting, interference among tasks, and the inability to exploit previous knowledge. While considerable research has focused on learning multiple input distributions, typically in classification, lifelong reinforcement learning (LRL) must also deal with variations in the state and transition distributions, and in the reward functions. Modulating masks, recently developed for classification, are particularly suitable to deal with such a large spectrum of task variations. In this paper, we adapted modulating masks to work with deep LRL, specifically PPO and IMPALA agents. The comparison with LRL baselines in both discrete and continuous RL tasks shows competitive performance. We further investigated the use of a linear combination of previously learned masks to exploit previous knowledge when learning new tasks: not only is learning faster, the algorithm solves tasks that we could not otherwise solve from scratch due to extremely sparse rewards. The results suggest that RL with modulating masks is a promising approach to lifelong learning, to the composition of knowledge to learn increasingly complex tasks, and to knowledge reuse for efficient and faster learning.
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
这项工作使用水果和叶子的图像提出了一个基于学习的植物性诊断系统。已经使用了五个最先进的卷积神经网络(CNN)来实施该系统。迄今为止,模型的精度一直是此类应用程序的重点,并且尚未考虑模型的模型适用于最终用户设备。两种模型量化技术,例如float16和动态范围量化已应用于五个最新的CNN体系结构。研究表明,量化的GoogleNet模型达到了0.143 MB的尺寸,准确度为97%,这是考虑到大小标准的最佳候选模型。高效网络模型以99%的精度达到了4.2MB的大小,这是考虑性能标准的最佳模型。源代码可在https://github.com/compostieai/guava-disease-detection上获得。
translated by 谷歌翻译
在构建医学成像数据集以进行深度学习方面,要注释下一步是一个具有挑战性的问题。解决这个问题的有前途的方法之一是主动学习(AL)。但是,关于哪些AL算法和采集功能最有用的数据集,AL一直很难破解。同样,当要开始的数据零标记时,问题会加剧,首先要标记哪个卷。这就是AL中的冷启动问题。我们针对3D图像分割提出了两种新型策略。首先,我们通过提出代理任务,然后利用从代理任务产生的不确定性来解决冷门问题,以对要注释的未标记数据进行排名。其次,我们为每个主动迭代制作了一个两阶段的学习框架,其中未标记的数据在第二阶段也被用作半监督的微调策略。我们展示了我们对来自医学分割十项全能的两个著名大型公共数据集的方法的希望。结果表明,数据和半监督框架的初始选择都显示出几种AL策略的显着改善。
translated by 谷歌翻译
指定的实体识别(NER)或从临床文本中提取概念是识别文本中的实体并将其插入诸如问题,治疗,测试,临床部门,事件(例如录取和出院)等类别的任务。 NER构成了处理和利用电子健康记录(EHR)的非结构化数据的关键组成部分。尽管识别概念的跨度和类别本身是一项具有挑战性的任务,但这些实体也可能具有诸如否定属性,即否定其含义暗示着指定实体的消费者。几乎没有研究致力于将实体及其合格属性一起确定。这项研究希望通过将NER任务建模为有监督的多标签标记问题,为检测实体及其相应属性做出贡献。在本文中,我们提出了3种架构来实现此多标签实体标签:Bilstm N-CRF,Bilstm-Crf-Smax-TF和Bilstm N-CRF-TF。我们在2010 I2B2/VA和I2B2 2012共享任务数据集上评估了这些方法。我们的不同模型分别在I2B2 2010/VA和I2B2 2012上获得最佳NER F1分数为0. 894和0.808。在I2B2 2010/VA和I2B2 2012数据集上,获得的最高跨度微积的F1极性得分分别为0.832和0.836,获得的最高宏观平均F1极性得分分别为0.924和0.888。对I2B2 2012数据集进行的模态研究显示,基于SPAN的微平均F1和宏观平均F1的高分分别为0.818和0.501。
translated by 谷歌翻译
网络值时间序列是目前的网络数据的常见形式。然而,研究由网络价值随机过程产生的网络序列的总体行为相对较少。现有的大多数研究都集中在简单的设置上,其中网络在整个时间内是独立的(或有条件独立的),并且所有边缘在每个时间步骤均同步更新。在本文中,我们研究了聚集的邻接矩阵的浓度特性以及与懒惰网络值随机过程产生的网络序列相关的相应拉普拉斯矩阵,其中边缘异步不断地更新,并且每个边缘都遵循其懒惰的随机过程,以更新独立于其更新其他边缘。我们证明了这些集中度的有用性,从而证明了标准估计器在社区估计和变更点估计问题中的一致性。我们还进行了一项仿真研究,以证明懒惰参数的影响,该参数控制时间相关的程度,对社区和变化点估计的准确性。
translated by 谷歌翻译
无监督的域适应性(DA)中的主要挑战是减轻源域和目标域之间的域移动。先前的DA工作表明,可以使用借口任务来通过学习域不变表示来减轻此域的转移。但是,实际上,我们发现大多数现有的借口任务对其他已建立的技术无效。因此,我们从理论上分析了如何以及何时可以利用子公司借口任务来协助给定DA问题的目标任务并制定客观的子公司任务适用性标准。基于此标准,我们设计了一个新颖的贴纸干预过程和铸造贴纸分类的过程,作为监督的子公司DA问题,该问题与目标任务无监督的DA同时发生。我们的方法不仅改善了目标任务适应性能,而且还促进了面向隐私的无源DA,即没有并发源目标访问。标准Office-31,Office-Home,Domainnet和Visda基准的实验证明了我们对单源和多源无源DA的优势。我们的方法还补充了现有的无源作品,从而实现了领先的绩效。
translated by 谷歌翻译
最近对基于细粒的基于草图的图像检索(FG-SBIR)的重点已转向将模型概括为新类别,而没有任何培训数据。但是,在现实世界中,经过训练的FG-SBIR模型通常应用于新类别和不同的人类素描器,即不同的绘图样式。尽管这使概括问题复杂化,但幸运的是,通常可以使用一些示例,从而使模型适应新的类别/样式。在本文中,我们提供了一种新颖的视角 - 我们没有要求使用概括的模型,而是提倡快速适应的模型,在测试过程中只有很少的样本(以几种方式)。为了解决这个新问题,我们介绍了一种基于几个关键修改的基于新型的模型 - 静态元学习(MAML)框架:(1)作为基于边缘的对比度损失的检索任务,我们简化了内部循环中的MAML训练使其更稳定和易于处理。 (2)我们的对比度损失的边距也通过其余模型进行了元学习。 (3)在外循环中引入了另外三个正规化损失,以使元学习的FG-SBIR模型对类别/样式适应更有效。在公共数据集上进行的广泛实验表明,基于概括和基于零射的方法的增益很大,还有一些强大的射击基线。
translated by 谷歌翻译